Suramin protects the murine motor nerves from the toxic effects of presynaptic Ca2+ channel inhibitors

Min-Jon Lina, Ching-Ting Tanb, Shiann-Yann Leec, Shoei-Yn Lin-Shiaua,b,*

aInstitute of Pharmacology, College of Medicine, National Taiwan University, No.1, Section 1, Jen-Ai Road, Taipei 10018, Taiwan
bInstitute of Toxicology, College of Medicine, National Taiwan University, No.1, Section 1, Jen-Ai Road, Taipei 10018, Taiwan
cDepartment of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan

Received 13 January 2000; received in revised form 14 April 2000; accepted 26 April 2000

Abstract

The purpose of this study is to investigate whether suramin is capable of preventing the neurotoxic effects of Ca2+ channel inhibitors at the presynaptic sites. Mouse diaphragm and triangularis sterni preparations were used for this study in order to measure the muscle tension and nerve terminal Ca2+ current, respectively. Both \(\omega\)-conotoxin MVIIIC and \(\omega\)-agatoxin IVA markedly inhibit the nerve-evoked muscle contractions as well as the nerve terminal Ca2+ current respectively. Pretreatment with suramin (0.3 mM) significantly reduced the inhibitory effect of nerve-evoked muscle contractions and Ca2+ current induced by either \(\omega\)-conotoxin MVIIIC or \(\omega\)-agatoxin IVA but not that induced by the non-selective Ca2+ channel blocker, Cd2+. Neither suramin nor Ca2+-channel toxins significantly affect Na+ and K+ currents of the nerve terminals. These findings indicate that suramin selectively interferes the action of presynaptic Ca2+ channel neurotoxins and thus reduces their depressant effects on the muscle contractions. The implication of these findings is that suramin and its derivatives may potentially become useful agents in management of intoxication of Ca2+ channel neurotoxins. © 2000 Elsevier Science Ireland Ltd. All rights reserved.

Keywords: Suramin; Ca2+ channel blockers; Presynaptic neurotoxins; Motor nerve terminals